On the Diophantine equation $x^2 + 7^\alpha \cdot 11^\beta = y^n$
نویسندگان
چکیده
منابع مشابه
THE DIOPHANTINE EQUATION x2+2k =yn, II
New results regarding the full solution of the diophantine equationx2+2k=yn in positive integers are obtained. These support a previous conjecture, without providing a complete proof.
متن کاملON THE DIOPHANTINE EQUATION Ax2+22m =yn
Let h denote the class number of the quadratic field Q( √−A) for a square free odd integer A> 1, and suppose that n> 2 is an odd integer with (n,h)= 1 and m> 1. In this paper, it is proved that the equation of the title has no solution in positive integers x and y if n has any prime factor congruent to 1 modulo 4. If n has no such factor it is proved that there exists at most one solution with ...
متن کاملOn the Diophantine Equation x 2 + 2 α 5 β 13 γ = yn
In this paper, we find all the solutions of the Diophantine equation x + 2 513 = y in nonnegative integers x, y, α, β, γ, n ≥ 3 with x and y coprime. In fact, for n = 3, 4, 6, 8, 12, we transform the above equation into several elliptic equations written in cubic or quartic models for which we determine all their {2, 5, 13}-integer points. For n ≥ 5, we apply a method that uses primitive diviso...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Miskolc Mathematical Notes
سال: 2012
ISSN: 1787-2405,1787-2413
DOI: 10.18514/mmn.2012.424